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Ray Tracing with X-rays in Deformed Crystals 
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The propagation of X-rays in an elastically deformed crystal has been studied using a ray-optical 
experimental arrangement. A single incident ray was selected from a Borrmann transmitted beam and 
was then diffracted through a thin crystal which was elastically strained by a temperature gradient. 
From the position and intensity of the rays at the exit surface it has been shown that for symmetric 
transmission, the plane wave boundary condition is maintained in any arbitrary but homogeneous 
strain field and that the migration of the tie points in good agreement with the theory. 

Introduction 

An extension of the dynamical theory of X-ray diffrac- 
tion to include diffraction in slightly strained crystals 
was first given by Penning & Polder (1961). This theory 
was modelled on the propagation of light beams 
through inhomogeneous media and was founded on 
certain ad hoc assumptions. The wave optical founda- 
tion to the Penning & Polder theory was provided by 
Kato (1963, 1964a, b) who showed that Penning & 
Polder's basic equation could be derived by applying 
Fermat's principle to the path of a modified Bloch 
wave through the deformed crystal. Independently, the 
basic assumptions of the theory and their range of ap- 
plicability were investigated by Kambe (1965, 1968). 
Penning & Polder's theory was later developed by 
Bonse (1964a) to allow for the complex nature of the 
vectors characterizing the wave-fields. 

Another approach to the problem has been to con- 
sider directly the modification of the dynamical wave- 
fields by the lattice distortion. With this method Takagi 
(1962, 1969), Taupin (1964) and Schlangenotto (1967) 
have used very general formalisms and have obtained 
differential equations which can be solved numerically 

* Present address: Wolfson Microelectronics Unit, Depart- 
ment of Electrical Engineering, University of Edinburgh, Edin- 
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for particular experimental cases. Taupin has been 
primarily concerned with the image forms of line de- 
fects whereas the Takagi theory has been used to ex- 
plain some experiments on elastically-strained crystals 
(Malgrange, 1968) where it was shown to give the same 
results as the ray theories over the range of deformation 
studied. 

Experimental verification of some aspects of these 
theories has been obtained by various workers. A de- 
crease in the diffracted intensity from a thick anom- 
alously transmitting crystal has been observed when 
the crystal is subjected to a bending moment (Hunter, 
1959; Cole & Brock, 1959; Okkerse & Penning, 1963) 
or to a temperature gradient (Borrmann & Hilde- 
brandt, 1959; Okkerse & Penning, 1963; Malgrange, 
1968). This decrease has, in the experiments, been quan- 
titatively explained by Penning & Polder's theory. An 
experiment of a different nature has demonstrated 
more dramatically the modification of the crystal wave- 
field vectors. Hart (1966) measured the displacement 
of the Pendell6sung fringes in a crystal strained by a 
temperature gradient. The fringe displacement was cor- 
rectly predicted by calculating the phase advance along 
the ray paths from the ray theory and by Kato's eikonal 
theory. This is not surprising since the existence of the 
eikonal implies ray optics. 

In order to obtain direct evidence of the energy prop- 
agation changes in a strained crystal, it is desirable 
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to isolate a single plane wave component from the inci- 
dent beam. As was shown by Kato (1961) the angular 
divergence of the usual well-collimated X-ray beam is 
several tens of seconds of arc which is sufficient to 
excite simultaneously the full range of reflexion of the 
crystal. This creates a very complicated wavefield 
within the crystal from which it is not possible to iden- 
tify directly any particular component. The situation 
can, however, be simplified by using the central part of 
a beam which has been anomalously transmitted 
through a thick crystal, as an incident beam for a sec- 
ond crystal. This produces a wave of limited spatial 
extent which can be described approximateIy by a single 
wave-vector and is a ray in the normal optical sense. 
With this device ray-tracing experiments have been 
performed in perfect crystals (Authier, 1961) and in 
crystals strained by a temperature gradient normal to 
the Bragg planes (Malgrange, 1968; Milne, 1968). The 
influence of strain on the propagation of X-ray wave- 
field beams has also been investigated using Bragg-case 
geometry by Bonse (1964b). In the present experiments 
both the ray trajectories and intensities have been meas- 
ured in a crystal deformed by a uniform temperature 
gradient. From these measurements a remarkable pre- 
diction of Penning & Polder's theory has been verified. 

R6sum6 of the theoretical background 

When a ray of light passes through a medium with 
slowly varying refractive index, we know that the ray 
path bends and that the appropriate wave-vector k 
characterizing the ray slowly changes. In fact, the 
change dk is in the direction in space where the refrac- 
tive index n varies most rapidly (see, for example, 
Sommerfeld, 1954; Born & Wolf, 1959). 

dkoc Vn.  (1) 

Reasoning by analogy, Penning & Polder (1961) as- 
sumed that the propagation of an X-ray wavefield 
beam in a crystal with a sufficiently slowly varying 
'local reciprocal-lattice vector h' can also be described 
with a slowly varying wave-vector K0 or Kk. They as- 
sumed that the local behaviour of a beam is completely 
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Fig. 1. Definit ions of  wave-vectors and  coord ina te  systems in 
the deformed  crystal. 

specified by the local values of h and K0 (Kh=K0+h) 
and the dynamical theory of X-ray diffraction for per- 
fect  crystals. Thus, h must not vary appreciably over 
the width of a ray while the ray must not be so narrow 
that it is inadequately represented by a single wave- 
vector K0. That these criteria can be met is demon- 
strated by the earlier experiments cited above, by Pen- 
ning (1966) theoretically and by the present exper- 
iments. To complete the optical analogy Penning & 
Polder asserted that (PP 18)* 

dKo=~ V(h. j) (2) 

where a is a constant of proportionality and Vg = [Vgl • j 
is the group velocity which is, for our purposes, the 
same as the energy transport velocity. It is eminently 
reasonable that the change in wave-vector dK0 should 
be determined solely by the change in the component 
of h along the ray path. 

From the theory of diffraction in perfect crystals 
(see, for example, Bonse, 1964a; Kato, 1958; yon Laue, 
1960; Wagner, 1956, 1959) we find that j, a unit vector 
parallel to the Poynting vector is given by 

j=B[l[(l+l~12)cosOf-(1-1~12)sinOn] (3) 

with 

B~= 1 + [~14 + 21~1 z cos 20. 

= Dn/Do is the amplitude ratio of the two waves making 
up the wave field, 0 is the Bragg angle and the unit vectors 
f and n are defined in Fig. 1. For the deformed crystal 
equation (2) becomes 

_ ~2 
dKo= ~ dl V(h. Kh) (4) 

or, in terms of the change of amplitude ratio, (PP 22) 

d~ 2~ 2 
d f  = -  kaClzkl& (Kh. V)(K0. V) (h .  v). (5) 

Here dl is an element of path, parallel to j, k -  1 = 2 is the 
X-ray wavelength and C is a polarization factor equal 
to 1 or Icos 201 for the a- or re-case polarizations re- 
spectively. Z~ is the hkl coefficient in the Fourier ex- 
pansion of the dielectric susceptibility and v is the atom- 
ic displacement field. Writing h . v= 2ku sin 0, equa- 
tion (5) becomes 

d~  4~ 2 sin 0 [ a2u 82u ] 
dl - CIzhlB1 .c°s 2 0-ff~z2 -s in20~-~-j .  (6) 

We will be exclusively concerned with symmetric trans- 
mission (Bragg planes normal to the crystal surfaces) 
and with weakly absorbing crystals. Then the amplitude 
ratio ( of the pair of waves excited by an incident plane- 
wave is simply related to the angle of incidence by (yon 
Laue, 1960) 

* We refer to equat ion  n in Penning & Polder 's  (1961) paper  
as (PP n) but, in view of  its wide use, we will use a no ta t ion  like 
that  in von Laue 's  (1960) book.  

A C 27A - 3 
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~= ( -  1)~ [ fl + V'fl z + 4zh2(~C ~] (7) 
21x, lC - 

where f l=AO sin 20 and the angle of incidence is O+AO. 
The polarization factor ~ is equal to unity when C =  
]cos 20] and 0> re/2, otherwise it is zero. It will be im- 
portant later that the product of the two values of 
in equation (7) is constant and independent of both the 
angle of incidence and state of polarization. 

~ =  - x ,  = _ i. (8) 
Yh 

This result is in fact geometrically rather obvious if 
we make use of the dispersion surface construction. 
Following yon Laue one can find Bloch wave solutions 
of Maxwell's equations in the triply-periodic crystal. If 
only one pair of Bloch waves has a large amplitude, 
their wave-vectors are given by the fundamental equa- 
tions of the two-beam dynamical theory. 

lKolZ-k2(1 + Xo + x~C~)=O (9a) 

IKj, lZ - kZ(1 +Zo+xnC~-~)=O. (9b) 

X-rays 270, 27h, 27~ are all of order 10 -s so that 
Ig01-~ I g n l - ~ k  and equations (9a) and (9b) can be ex- 
panded and solved for Ig01 and Ighl. Thus, writing as 
is usual 

c~0 = IK0l-k(1-½27o)=½Ckxr,~ (10a) 

cth=lg, l - k (1 -½Xo)=kCkxh~  -~ (10b) 

we find 

O~o=h = ¼k=CZz..X~ = c o n s t a n t .  (1 1) 

The geometrical relationships between allowed wave- 
vectors described by equation (11) are illustrated in 
Fig. 2. The dispersion surface consists of four branches, 
one pair for each of the principal states of polarization, 
which are asymptotic to two spheres of radius 
k(1 -½270), one centred on the origin O of the reciprocal 
lattice and the other centred at H. 

An external plane-wave with a wave-vector 10 ex- 
cites four Bloch waves inside the crystal with tie-points 
A, B, C, D and ABCD1 is a straight line normal to the 
entrance surface of the crystal. Because the dispersion 
surfaces are hyperbolae A F =  ED and BF= EC. Using 
equations (10) above it follows simply that 

cos V0 Zh 
~ l ~ z  = - 

cos ~'h " Xh 

or, in the case of symmetric transmission and no 
anomalous dispersion, 

~i~z= _ x__E = _ 1 .  ( 1 2 )  
Xh 

In the deformed crystal we can calculate the change 
of amplitude by integrating equation (6) along the ray 
path which is defined by d r = j .  dl and equation (3). 
If the term in square brackets in equation (6) is a con- 
stant, the result is (Penning & Polder, 1961) 

-- ( ' , - -  ----4, (13) 

where p is a deformation parameter and we have used 
subscript e to indicate values at the exit surface of the 
crystal and subscript i to indicate values of parameters 
at the entrance surface of the crystal, p is a constant in 
the cases that we have studied experimentally and is 
given by 

_ t tan O [ 0-~-z2- c~2u 0 ~-~-]- Bzu 1 
P C IX hI c°sZ - s i n  2 (14) 

where t is the thickness of the crystal. As this equation 
holds equally well for both branches of the dispersion 
surface we can write, for each state of polarization, 

~le- 1/~le= ~,- 1/~-F4p } (15) 

In the symmetric Laue case, we know from equation 
(12) that (u = - 1/~2i. It immediately follows from the 
last two equations that ~le = - 1 / ~ 2 e -  Therefore, in any 
arbitrary strainfield for which p/t  is constant, the am- 
plitude ratios ~1, ~2 for two rays which are excited to- 
gether at the entrance surface of the deformed crystal 
are always related by the plane wave boundary condi- 
tion of equation (12). This remarkable result is true in 
the symmetric Laue case for either state of polarization 
and for all angles of incidence of the primary ray, even 

,,. 

Brillouin zone boundary 

o H to O~ 

Fig. 2. Dispersion surfaces and wave-vectors in reciprocal 
space. 



M. H A R T  AND A. D. M I L N E  433 

though the two rays propagate through different parts 
of the crystal. 

Experimental method 

In principle our experimental method is the same as 
the double-crystal technique used by Authier (1961) to 
study ray propagation in perfect crystals. The first 
crystal is sufficiently thick that only the anomalously 
transmitted radiation has appreciable intensity. From 
the emerging ray bundle a single ray can be selected 
with an appropriate slit and this ray is used to probe 
the second crystal. Whereas in Authier's experiments 
the second crystal was effectively perfect, in our ex- 
periments the second crystal is deformed elastically by 
a uniform temperature gradient normal to the Bragg 
planes. 

To obtain adequate long term stability we do not 
use a double crystal diffractometer but instead cut the 
two diffracting elements as parts of the same mono- 
lithic block of silicon (see Fig. 3). The 50/tin slit S is 
used to select a single ray from the bundle emerging 
from the thick crystal A. This ray is incident on the 
thinner crystal B in which we will study ray paths. 
Crystal B is heated at its upper edge by an electric cur- 
rent and is cooled by water flowing through the base of 
the crystalline monolith. Since the water flows from A 
to B, the first crystal always remains at the same tem- 
perature. Even though the two crystals are connected 
together through their common base, their relative 
orientation can be altered if a couple is applied to A 
so as to cause a bodily rotation of A about the region 
C. In practice we are concerned with rotations of a few 
seconds of arc so that the rotation is proportional to 
the applied couple. 

With Mo Kcq radiation and a crystal thickness of 
6.7 mm the waves belonging to branch 2 of the disper- 
sion surface are ten times as intense as those belonging 
to branch 1 at the exact Bragg angle for the 220 reflex- 
ion. Thus, the first crystal effectively eliminates the 
waves associated with the strongly absorbed branch of 
the dispersion surface. The thickness of the second 
crystal is determined as a compromise between two 
conflicting requirements. Because rays from both 
branches have to be recorded, the enhanced attenua- 
tion associated with branch 1 of the dispersion surface 
should be minimized by making crystal B as thin as 
possible. On the other hand, the rays generated in the 
second crystal only become spatially separated and 
distinct if the crystal is thick enough. A thickness of 
1 mm was chosen as optimum for crystal B. The separa- 
tion of the two crystals, which in practice was deter- 
mined by the physical size of the slit assembly, was 
about 6 mm. 

The slit used to select the central ray from the col- 
limating crystal was constructed from two strips of tan- 
talum and was mounted on a threaded rod so that it 
could be accurately positioned in the X-ray beam. By 
selecting the central part of the diffracted beam, the 

effective angular divergence of the beam incident on 
the second crystal was approximately 0.05 seconds of 
arc. Over this angular range the phase is almost con- 
stant and the wave bundle can satisfactorily be de- 
scribed by its central wave-vector (Penning, 1966). 

The couple was applied to crystal A by attaching a 
T-shaped lever to the top of the crystal from which 
weights were suspended. Since the angular divergence 
of the primary beam was almost 2 minutes of arc, the 
Bragg condition was still well satisfied when A and B 
differed in orientation by a few seconds of arc. 

Ohmic contacts were made to the upper end of the 
thin crystal by soldering fine gauge copper wires to the 
surface which had previously been nickel plated by an 
electroless process (Brenner, 1954). The temperature 
of the water passing through the base channel was 
thermostatically controlled at the same temperature as 
the enclosure which surrounded the whole apparatus 
during the experiment. Four carefully matched, 75 pm 
copper-constantan thermocouples were attached near 
the top and bottom of the heated crystal so that the 
temperature and temperature gradient could be meas- 
ured at any time during the exposure. Before attaching 
the thermocouples, a photograph of the rays emerging 
from the crystal showed that the crystal was effectively 
perfect. After the thermocouples had been glued to the 
crystal a repeated exposure showed that no inhomo- 
geneous strain had been introduced. 

It has been shown that the LOPEX silicon grown by 
Texas Instruments Inc. and used for these experiments 
is laminated normal to the [111] growth axis and that 
the laminations have fluctuations of lattice parameters 
6d/d ~_ 2 x 10 -v. Such strains have no important effects 
if the 220 Bragg reflexion is utilized (Hart & Milne, 
1969). 

Results 

(a) No elastic deformation 
With no temperature gradient we obtained a calibra- 

tion of the angle of incidence on the second crystal by 
repeating Authier's experiment: the separation of the 
two rays at the exit surface was measured as a function 
of the applied couple on the first crystal. These results 
are shown in Fig. 4. As in Authier's experiment, crystal 
B was too thin for us to resolve the splitting of ray 
paths due to X-ray polarization. Later, we will use a 
mean value of the polarization factor C = ½(1 + [cos 20 D 
in the theoretical interpretation. 

From equation (3) we see that the angle A between 
the Poynting vector and the Bragg planes is given by 

~2_ 1 
tan A -  ~2+ 1 tan 0 (16) 

or, in terms of the separation Ax of the two rays ar- 
riving at the exit surface of the crystal, 

tan A Ax 
tan-----O = 2t t a n ~  - P"  (17) 

The deviation parameter P can be related to the angle 

A C 2 7 A  - 3 "  
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• . ~ l l l  [110] 

T/ 
Water out 

. ____£  

Water in 

(a) 

(b) 

Fig. 3. (a) Experimental arrangement showing the design of the two wafer monolithic silicon crystal. Crystal B is heated electrically 
at its top edge with a current supplied through the wires H and is cooled by water flowing through the base of the crystal. 
The temperature gradient is measured with the thermocouples T. The relative orientation of the wafers A and B is changed 
by controlled bending of region C with the weight W. (b) The crystal used, before lead attachment. 

[To.face p. 433 
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of incidence using equations (16) and (7) so that 

- AO sin 0 P(1-p2)-x/2= . (18) 
CZ. 

Using equations (17) and (18) the calibration of the 
angle of incidence in terms of the applied couple was 
obtained from the results in Fig. 4. The calibration 
(Fig. 5) was repeated after the second crystal had been 
strained and it was verified that the strain had been 
entirely elastic and reproducible. 

(b) Temperature gradient 
Each ray arriving at the exit surface of the crystal 

splits into its two components which propagate inde- 
pendently outside of the crystal. Thus, four rays emerge 
from the crystal, as indicated in Fig. 3. For several dif- 
ferent temperature gradients and with various angles 
of incidence the beams were recorded in Ilford nucl. ar 
emulsions type L4. In each case the intensities of the 
four beams were measured from densitometer traces cf  
the original plates and the intensity ratios I1R/I~r and 
I2R/12r were calculated. These ratios are respectively 
~z~e and ~e. From equations (12) and (15) we know that 
the product of these two terms is always unity. The full 
set of results is shown in Table 1. Within the errors of 
measurement the entries in the right hand column are 
constant and equal to one. 

Table 1. Values of VT, AO, the intensity ratios 
and 1~1~21 

V T  AO I1R/I1T I2Ie/I2T 1~1~21 
(deg.cm -1) (sec) 

0 0-34 1.67 0.700 1.08 
0 0.42 1.90 0.389 0.86 
0 0.49 2.07 0.450 0.97 
0 1-12 6.10 0.161 0.99 
1.22 0.47 2.67 0.600 1.26 
1-22 0-65 3.30 0-215 0.84 
3-53 0-31 3.00 0.300 0.95 
3.53 0.42 2.23 0.510 1.07 
3.53 0.42 2.57 0.420 1.04 
3-53 0.66 3.60 0.307 1.05 
3.53 0.81 4.15 0.224 0-97 
3.53 0-89 4.76 0-167 0.89 
3.53 1.03 5.29 0.174 0.96 
5.65 0.83 5.45 0.190 1-02 
5.65 0.92 4-90 0.126 0.79 
5-65 1.25 9.55 0.134 1.13 

There were two experimental complications which 
warrant some discussion. Although a temperature gra- 
dient is a convenient means of applying strain to a 
crystal, it also causes a change in the absolute temper- 
ature at the point of incidence in the second crystal. 
This, in turn, changes the Bragg angle and the effective 
angle of incidence of a ray on the second crystal. How- 
ever, one special angle of incidence can be detected so 
that our angle scale can be put on an absolute basis. 
If the angle of incidence and the deformation are such 
that the two ray paths are coincident at the exit surface 
it follows that ~2i = --~i-i I =  - -~ le=~2e  1. Hence, from 

equation (15) we have p=½(~le--~31)=--½(~l~--~i~ ~) 
and we can identify this unique angle of incidence by 
substituting the above value of ~1~ in equations (16), 
(17) and (18). 

Because the attenuation of wave-fields depends sen- 
sitively upon the angle of incidence and so is a function 
of A (see, for example, von Laue, 1960) the ray profile 
changes as the ray path bends in the strain field. Penning 
(1966) has shown that a Gaussian wave packet does 
not change shape as long as the ray approximation is 
justified. To avoid errors due to this effect our results 
in Table 1 refer to the total energy of the rays, i.e. the 
areas under the peaks in the microdensitometer traces 
of the ray images. 

Conclusion 

The agreement between the results in Table 1 and the 
ray theory is very satisfactory. The final column in the 
table is constant to within a few percent as expected. 
As Authier, Malgrange & Tournarie (1968) have 
shown, Takagi's theory (Takagi, 1962, 1969) predicts 

I I I I 
-20 -15 -10 -5 

0.4 .co 
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>. 

• 0.2 c~ 

.0.1 
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} I I I 
" ~ 5  10 15 20x103 
.0"1 
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Fig. 4. Calibration curves with no temperature  gradient show- 
ing the change of ray separation with applied couple. 
ZX Before deformation,  © after deformation.  

zxe(sec) 

i ~ l  1"5 /x "0 

0"5 

! 
-20 -15 -10 -5 I \  
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Fig. 5. The results of Fig. 4 converted to provide an angle 
calibration. A Before deformation,  O after deformation.  
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the same ray paths and intensities in a crystal deformed 
by a temperature gradient as does Penning and Polder's 
theory. Therefore, these experiments provide evidence 
supporting both theories. In fact, Penning (1966) has 
shown that all of the theories cited earlier lead to the 
same result if the ray approximation is justified. 

It is interesting to notice that if the sign of the change 
d~ in the wave amplitude ratio ~ [see equation (6)] had 
been different for the two branches of the dispersion 
surface, then the intensity products in Table 1 would 
have changed from lanity to approximately 1-9 for 
p=0.16.  

The surprising result, that the two wave-fields are 
always related by the plane-wave boundary condition, 
is easily understood if we look again at the dispersion 
surface construction. Rearranging equation (11) we can 
calculate the component of the crystal wave-vector 
parallel to h: 

K0. h=½h + 4 s---in~-0 ~ - ~  " 

The change in this component of the wave-vector as 
the ray propagates from the entrance surface to the 
exit surface in an elastically deformed crystal is 

kCxh 1 1 
6(Ko. f a ) - 4 s i n 0  [ ( ~ - i - ~ ' )  - ( - ~ - - ~ ) ]  

or 

6(K0 1~) - kCz~, 
• sin 0 "p (19) 

which is independent of the angle of incidence (~) and 
does not depend on the state of polarization since p is 
inversely proportional to C [equation (14)]. The change 
in the component of the crystal wave-vector normal to 
the Brillouin zone boundary is, therefore, the same for 
all branches of the dispersion surface. This, geomet- 
rically, is how the plane-wave boundary condition is 
maintained in the symmetric Laue case. 

References 

AUTHIER, A. (1961). Bull. Soc. franc. Min6r. Crist. 84, 
51. 

AUTHIER, A., MALGRANGE, C. & TOtmNARIE, M. (1968). 
Acta Cryst. A24, 126. 

BONSE, U. (1946a). Z. Phys. 177, 385. 
BONSE, U. (1946b). Z. Phys. 177, 529. 
BORN, M. & WOLF, E. (1959). Principles of Optics. London: 

Pergamon Press. 
BORRMANN, G. & HILDEBRANDT, G. (1959). Z. Phys. 156, 

189. 
BRENNER, A. (1954). Metal Finishing, 52, 68. 
COLE, H. & BROCK, G. L. (1959). Phys. Rev. 116, 868. 
HART, M. (1966). Z. Phys. 189, 269. 
HART, M. & MILNE, A. D. (1969). Acta Cryst. A25, 

134. 
HUNTER, E. P. (1959). J. AppL Phys. 30, 874. 
KAMBE, K. (1965). Z. Naturforsch. 20a, 770. 
KAMBE, K. (1968). Z. Naturforsch. 23a, 25. 
KATO, N. (1958). Acta Cryst. 11, 885. 
KATO, N. (1961). Aeta Cryst. 14, 627. 
KATO, N. (1963). J. Phys. Soe. Japan, 18, 1785. 
KATO, N. (1946a). J. Phys. Soe. Japan, 19, 67. 
KATO, N. (1964b). J. Phys. Soc. Japan, 19, 971. 
LAVE, M. YON (1960). R6ntgenstrahlinterferenzen. Leipzig: 

Akademische Verlagsg. 
MALORANGE, C. (1968). Th6se, l'Univ, de Paris. 
MILNE, A. D. (1968). Thesis, Univ. of Bristol. 
OKKERSE, B. & PENNING, P. (1963). Philips Res. Rep. 18, 

82. 
PEN~NG, P. (1966). Proefschrift, Technische Hogeschool te 

Delft. 
PENNING, P. & POLDER, D. (1961). Philips Res. Rep. 16, 

419. 
SCHLANGENOTTO, H. (1967). Z. Phys. 203, 17. 
SOMMERFELD, A. (1954). Optics. New York: Academic 

Press. 
TAKAOI, S. (1962). Acta Cryst. 15, 1131. 
TAKAGI, S. (1969). J. Phys. Soc. Japan, 26, 1239. 
TAtn'IN, D. (1964). Bull. Soc. franc. Min6r. Crist. 87, 469. 
WAGNER, E. H. (1959). Z. Phys. 154, 352. 
WAGNER, H. (1956). Z. Phys. 146, 127. 


